Thin, fenestrated acellular dermal matrix designed for single application that supports regeneration of host tissue.
Non-healing diabetic foot ulcers may lead to amputations.

- DFU-related complications can result in a reduced quality of life for the patient and are a significant cost burden to the healthcare system.
- Approximately 85% of all non-traumatic amputations are preceded by a non-healing foot ulcer.¹
- Within five years following an initial amputation, up to 51% of diabetic amputees undergo a second leg amputation.²
- 69% of diabetic amputees will not survive past five years.³

Patient presents with an infected diabetic foot ulcer under the right fifth metatarsal head.

Patient with previous foot surgery, including an incomplete transmetatarsal amputation on the right, presents with a new ulcer under the first metatarsal head.

Case images courtesy of Lee C. Rogers, DPM; used by permission.
KCI presents Graftjacket® regenerative tissue matrix (RTM) for diabetic foot ulcers.

A Structured Wound-Healing Therapy from a leader in wound care.

Graftjacket® RTM is an intact, human acellular dermal matrix for DFUs, including superficial and deep wounds:

- In a 12-week prospective, randomized, controlled study, beginning at the 3-week follow-up evaluation, the proportion of healed ulcers in the study group (received Graftjacket® RTM) was at least 15\% higher than the control group (received Moist Wound Therapy) ($p = 0.0289$, Odds Ratio = 2.7).*4

- Requires only one application, in most cases, and can be placed in the operating room or outpatient setting.

- KCI V.A.C.® Therapy can be used to prepare the wound bed for grafting and as a bolster following Graftjacket® RTM application.

- Replaces damaged or missing tissue with ‘like’ tissue by supporting cellular repopulation and revascularization by host tissue.

- Provided in a thin sheet for conformability to the wound, maintaining surface area contact when sutured or stapled in place.

- Fenestrated to allow for wound fluid to escape.

*A 12-week prospective, randomized, controlled, multicenter study using Graftjacket® RTM in the treatment of UT Grade 1 \& 2 diabetic foot ulcers, $N = 46$ received Graftjacket® RTM (4 x 4cm). $N = 39$ received standard of care wound management (Moist Wound Therapy with alginates, foams, hydrocolloids or hydrogels).
Positive healing results demonstrated at Week 3.

12-week prospective, randomized, controlled, multicenter study using Graftjacket® regenerative tissue matrix in the treatment of UT Grade 1 & 2 diabetic foot ulcers
Authors: Dr. Alexander Reyzelman and Dr. David Armstrong, DPM

Objective
To evaluate the healing rates at 12 weeks of patients with UT Grade 1 & 2 diabetic foot ulcers when applying Graftjacket® RTM (N = 46) compared with Moist Wound Therapy (N = 39) for the treatment of diabetic foot ulcers.

Complete healing was defined as 100% re-epithelialization without drainage.

UT Grade = University of Texas Wound Classification System

Results and conclusions
- Wounds treated with a single Graftjacket® RTM application were approximately 2.7 times more likely to heal at 12 weeks versus standard wound management (p = 0.0289, Odds Ratio = 2.7).

Beginning at the 3-week follow-up evaluation, the proportion of healed ulcers in the study group (received Graftjacket® RTM) was at least 15% higher than the control group (received Moist Wound Therapy).

69.6% of patients treated with Graftjacket® RTM achieved complete healing. Mean time to healing was less than 6 weeks.
A multicenter study involving the use of a human acellular dermal regenerative tissue matrix (Graftjacket® regenerative tissue matrix) for the treatment of diabetic lower extremity wounds.

Author: Christopher Winters, DPM

Objective
A multicenter, retrospective study to evaluate the time to complete healing of chronic full-thickness wounds using Graftjacket® RTM (N = 100 wounds, N = 75 patients).

Healing was considered complete when the basement membrane of the matrix was released and full epithelialization was present across the wound.

Results and conclusions
- Graftjacket® RTM healed 91 wounds in 75 patients
- Mean time for incorporation of matrix for Grade 3 wounds: 1.5 weeks
- Overall healing rate: 91.0%
- Mean time to complete healing: 13.8 weeks
- Authors conclude: “Absence of matrix-related complications and high rates of closure in a wide array of diabetic wounds suggest that this matrix is a viable treatment for complex lower extremity wounds... with successful results in both superficial diabetic wounds and in wounds penetrating to the bone or joint.”

Mean time to complete healing

<table>
<thead>
<tr>
<th>UT Grade</th>
<th>N</th>
<th>Mean time to complete healing (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT Grade 1</td>
<td>19</td>
<td>Mean = 10.9</td>
</tr>
<tr>
<td>UT Grade 2</td>
<td>34</td>
<td>Mean = 12.4</td>
</tr>
<tr>
<td>UT Grade 3</td>
<td>47</td>
<td>Mean = 16.6</td>
</tr>
</tbody>
</table>

No statistically significant difference in mean time to healing between wound types was found in this study; error bars represent standard deviation.

UT Grade = University of Texas Wound Classification System
Case study

V.A.C.® Therapy used to prepare wound bed for Graftjacket® RTM

Situation

47 year-old male with Type 2 diabetes, HIV and peripheral neuropathy presented with an infected diabetic foot ulcer under the right fifth metatarsal head. (Figure 1)

The ulcer was debrided in the OR and the patient was admitted to the hospital on IV antibiotics. Osteomyelitis was ruled out by bone biopsy and x-ray. After the infection was controlled, V.A.C.® Therapy was initiated. After 12 days, it was determined that V.A.C.® Therapy met its goal; the wound bed was granular and therefore ready for Graftjacket® RTM application. (Figure 2)

Graftjacket® RTM was sutured into the wound and covered with a non-adherent dressing. Offloading was prescribed. (Figure 3)

Outcome

Graftjacket® RTM absorbed in the center of the wound. (Figure 4)

The wound epithelialized with healthy plantar skin within 6 weeks. (Figure 5)

Case images courtesy of Lee C. Rogers, DPM; used by permission.

As with any case study, the results and outcomes should not be interpreted as a guarantee or warranty of similar results. Individual results may vary depending on the patient’s circumstances and condition.
Case study

Patient with incomplete transmetatarsal amputation presents with new ulcer

Situation

60 year-old male with Type 2 diabetes and previous foot surgery, including an incomplete transmetatarsal amputation on the right foot, presents with a new ulcer under the first metatarsal head. Infection, including osteomyelitis, was ruled out. The wound was debrided to healthy bleeding tissue. (Figure 1)

Treatment

Graftjacket® RTM was applied in the clinic and sutured in place. (Figure 2)

Graftjacket® RTM incorporated over 4 weeks and the superficial layer dessicated and sloughed at that time. (Figure 3)

Outcome

The wound was 90% closed and best practices for wound care were followed until complete closure 2 weeks later. (Figure 4)

After 6 months, the healed wound had remodeled and healthy plantar skin was noted at this location. (Figure 5)

Case images courtesy of Lee C. Rogers, DPM; used by permission.

As with any case study, the results and outcomes should not be interpreted as a guarantee or warranty of similar results. Individual results may vary depending on the patient’s circumstances and condition.
Proprietary process provides a foundation for tissue regeneration.

Natural biological components and structure of the dermal matrix are preserved.

Our proprietary process leaves an intact, acellular matrix that allows the body to initiate its own tissue regeneration process.

Donor screening

- Complies with FDA and AATB standards for donated human tissue

Proprietary tissue processing

- Non-damaging steps designed to maintain an intact matrix and preserve biologic components
- Non-damaging freeze-drying process
- Product release testing

Graftjacket® RTM

- Helps reduce the body’s rejection response
- Designed to support cellular repopulation and revascularization by host tissue
- Helps reduce inflammatory response

Regeneration of functional host tissue

*Data based on non-human primate studies; correlation of these results in humans have not yet been established.
Understanding your options.
Acellular scaffolds differ from cellular-based products.

Acellular
Epidermal and deep dermal cells are removed during processing

The body recognizes the scaffold as “self” to help support cellular repopulation and revascularization.

One-time application, in most cases\(^5\)

Provides cells to the wound bed\(^7,8\)

May require multiple applications\(^9,10\)

Contains cells

Different biologic scaffolds may produce different results.

Positive Recognition\(^5\)

Cellular infiltration and repopulation of the scaffold results in like-for-like replacement of missing tissue\(^5\)

Tissue that has similar structure, function and physiology as surrounding host tissue

Negative Recognition\(^6\)

A prolonged inflammatory response occurs, resulting in destruction of the scaffold as well as scar tissue formation as demonstrated in primate studies\(^6\)

Tissue that has a different structure, cellularity, vascular pattern from the surrounding host tissue\(^6\)
Reimbursement Codes

<table>
<thead>
<tr>
<th>HCPCS Code</th>
<th>Description</th>
<th>Non-Fac RVU</th>
<th>Fac RVU</th>
<th>APC Cross Walk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q4107</td>
<td>Graftjacket® Skin Substitute</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wound Location: Trunk, Arms and Legs

<table>
<thead>
<tr>
<th>Size</th>
<th>CPT® Code</th>
<th>Description</th>
<th>Non-Fac RVU</th>
<th>Fac RVU</th>
<th>APC Cross Walk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Wound</td>
<td>15271</td>
<td>Application of skin substitute graft to trunk, arms, legs, total surface area up to 100 sq cm; first 25 sq cm or less wound surface area</td>
<td>(4.24)</td>
<td>(2.58)</td>
<td>134</td>
</tr>
<tr>
<td>Small Add on code</td>
<td>+15272</td>
<td>Each additional 25 sq cm wound surface area, or part thereof (List separately in addition to code for primary procedure)</td>
<td>(0.80)</td>
<td>(0.51)</td>
<td>133</td>
</tr>
<tr>
<td>Large Wound</td>
<td>15273</td>
<td>Application of skin substitute graft to trunk, arms, legs, total wound surface area greater than or equal to 100 sq cm; first 100 sq cm wound surface area, or 1% of body area of infants and children</td>
<td>(8.71)</td>
<td>(6.15)</td>
<td>135</td>
</tr>
<tr>
<td>Large Add on code</td>
<td>+15274</td>
<td>Each additional 100 sq cm wound surface area, or part thereof, or each additional 1% of body area of infants and children, or part thereof (List separately in addition to code for primary procedure)</td>
<td>(2.05)</td>
<td>(1.30)</td>
<td>134</td>
</tr>
</tbody>
</table>

Wound Location: Face, Scalp, Eyelids, Mouth, Neck, Ears, Orbits Genitalia, Hands, Feet and/or multiple digits

<table>
<thead>
<tr>
<th>Size</th>
<th>CPT® Code</th>
<th>Description</th>
<th>Non-Fac RVU</th>
<th>Fac RVU</th>
<th>APC Cross Walk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Wound</td>
<td>15275</td>
<td>Application of skin substitute graft to face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits, total wound surface area up to 100 sq cm; first 25 sq cm or less wound surface area</td>
<td>(4.55)</td>
<td>(2.99)</td>
<td>134</td>
</tr>
<tr>
<td>Small Add on code</td>
<td>+15276</td>
<td>Each additional 25 sq cm wound surface area, or part thereof (List separately in addition to code for primary procedure)</td>
<td>(0.99)</td>
<td>(0.73)</td>
<td>133</td>
</tr>
<tr>
<td>Large Wound</td>
<td>15277</td>
<td>Application of skin substitute graft to face, scalp, eyelids, mouth, neck, ears, orbits, genitalia, hands, feet, and/or multiple digits, total wound surface area greater than or equal to 100 sq cm; first 100 sq cm wound surface area, or 1% of body area of infants and children</td>
<td>(8.76)</td>
<td>(6.35)</td>
<td>135</td>
</tr>
<tr>
<td>Large Add on code</td>
<td>+15278</td>
<td>Each additional 100 sq cm wound surface area, or part thereof, or each additional 1% of body area of infants and children, or part thereof (List separately in addition to code for primary procedure)</td>
<td>(2.42)</td>
<td>(1.61)</td>
<td>134</td>
</tr>
</tbody>
</table>
13. CPT codes and descriptions only are copyright © 2011 American Medical Association. All rights reserved. No fee schedules are included in CPT. The American Medical Association assumes no liability for data contained, or not contained, herein.
Graftjacket® regenerative tissue matrix for diabetic foot ulcers.

Graftjacket® RTM is a preferred regenerative treatment for challenging wounds such as DFUs.

- In a 12-week prospective, randomized, controlled study, beginning at the 3-week follow-up evaluation, the proportion of healed ulcers in the study group (received Graftjacket® RTM) was at least 15% higher than the control group (received Moist Wound Therapy) ($p = 0.0289$, Odds Ratio $= 2.7$).\(^*\)\(^4\)

- A single application of Graftjacket® RTM may help reduce cost of care.\(^4\)

- KCI V.A.C.® Therapy can be used to prepare the wound bed for grafting and as a bolster following Graftjacket® RTM application.

- Replaces damaged or missing tissue with ‘like’ tissue by supporting cellular repopulation and revascularization by host tissue.

- Provided in a thin sheet for conformability to the wound, maintaining surface area contact when sutured or stapled in place.

- Fenestrated to allow for wound fluid to escape.

ordering information

<table>
<thead>
<tr>
<th>Graftjacket® regenerative tissue matrix</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Product code</td>
<td>HRI Number</td>
</tr>
<tr>
<td>GJ44</td>
<td>9978251644</td>
</tr>
<tr>
<td>GJ48</td>
<td>9978253248</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graftjacket® Xpress flowable soft tissue scaffold</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Product code</td>
<td>HRI Number</td>
</tr>
<tr>
<td>GJX</td>
<td>9979300202</td>
</tr>
</tbody>
</table>

* A 12-week prospective, randomized, controlled, multicenter study using Graftjacket® RTM in the treatment of UT Grade 1 & 2 diabetic foot ulcers, N = 46 received Graftjacket® RTM (4 x 4cm). N = 39 received standard of care wound management (Moist Wound Therapy with alginates, foams, hydrocolloids or hydrogels).

Every patient is different and patient results may vary. Before use, physicians must review all risk information and essential prescribing information which can be found in the Graftjacket® regenerative tissue matrix Instructions for Use.

Ordering information

<table>
<thead>
<tr>
<th>Ordering information</th>
<th>Reimbursement</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.800.275.4524</td>
<td>KCIreimbursement@trgltd.com</td>
<td>graftjacketbykci.com</td>
</tr>
<tr>
<td>1.866.567.5498</td>
<td>www.kci1.com</td>
<td></td>
</tr>
</tbody>
</table>

© 2011 KCI Licensing, Inc. All rights reserved. Graftjacket is a trademark of Wright Medical Technology, Inc. CPT is a registered trademark of the American Medical Association. All other trademarks designated herein are proprietary to KCI Licensing, Inc., its affiliates and/or licensors. For US use only. Products processed by LifeCell Corporation for KCI. DSL# 11-0474 (Rev 2/12)